数学帝来一下……求助5道初二的数学题
1.如果多项式P=2a的平方+17b的平方-16a-34b+2004求P的最小值2.已知a的平方+b的平方=1c的平方+d的平方=1ac+bd=0求ab+cd=?3.求证...
1.如果多项式P=2a的平方+17b的平方-16a-34b+2004
求P的最小值
2.已知a的平方+b的平方=1
c的平方+d的平方=1
ac+bd=0
求ab+cd=?
3.求证 x.y不论为什么实数,
<1>x的平方+y的平方-2x+12y+40都是正数
<2>x的平方+y的平方+xy都为非负
4.设a b c d为实数 且ad-bc=1
a的平方+b的平方+c的平方-ab+cd=1
求abcd=?
5.已知x的平方-yz=y的平方=xz=z的平方-xy
求证 x=y=z或者x+y+z=0
就是这样……哭搜明天要交到现在我都没写出来!!!!我数学差我承认T T。。。
拜托了各位T T…… 展开
求P的最小值
2.已知a的平方+b的平方=1
c的平方+d的平方=1
ac+bd=0
求ab+cd=?
3.求证 x.y不论为什么实数,
<1>x的平方+y的平方-2x+12y+40都是正数
<2>x的平方+y的平方+xy都为非负
4.设a b c d为实数 且ad-bc=1
a的平方+b的平方+c的平方-ab+cd=1
求abcd=?
5.已知x的平方-yz=y的平方=xz=z的平方-xy
求证 x=y=z或者x+y+z=0
就是这样……哭搜明天要交到现在我都没写出来!!!!我数学差我承认T T。。。
拜托了各位T T…… 展开
5个回答
展开全部
楼主别怕
1.p=2a^2+17b^2-16a-34b+2004
=2(a-4)^2+17(b-1)^2+1945
当a=4,b=1时,有最小值1945
2.(很牵强~有问题)令a=sina,b=sina,c=sinb,d=cosd,且abcd均为锐角
则cosacosb+sinasinb=0,即cos(a+b)=0,所以sin(a+b)=1
而ab+cd=cosasina+cosbsinb
=(sin2a+sin2b)/2
=2[sin(a+b)cos(a-b)]/2
=cos(a-b)=cos[a-(π/2-a)]=cos(2a-π/2)=sin(2a)=2sinacosa
所以有sinacosa=sinbcosb,即sin2a=sin2b
可以得到2a=2b(就是这步有问题),之后可以得到ab+cd=1
3.(1)x^2+y^2-2x+12y+40=(x-2)^2+(y+6)^2+3,显然>=0
(2)x^2+y^2+xy=(x+y)^2-xy
又xy<=(x^2+y^2)/2
所以上式>=(x+y)^2-[(x+y)^2/2]>=(x+y)^2/2 非负
4.不如设a=sinα,b=sinβ,c=cosα,d=cosβ,反正只有一个答案,不如就特殊化
则可以得到:
sinαcosβ-cosαsinβ=sin(α-β)=1,cos(α-β)=0
又由条件2有1+cosα^2-sinαsinβ+cosαcosβ=1
即cos^2(α)=-cos(α-β)=0,所以取一种情况α=π/2,β=0
得到abcd=sinαsinβcosαcosβ=(sin2αsin2β)/4=0
5.不太清楚,想出来再告诉你吧,不好意思了
希望对你有帮助~~
1.p=2a^2+17b^2-16a-34b+2004
=2(a-4)^2+17(b-1)^2+1945
当a=4,b=1时,有最小值1945
2.(很牵强~有问题)令a=sina,b=sina,c=sinb,d=cosd,且abcd均为锐角
则cosacosb+sinasinb=0,即cos(a+b)=0,所以sin(a+b)=1
而ab+cd=cosasina+cosbsinb
=(sin2a+sin2b)/2
=2[sin(a+b)cos(a-b)]/2
=cos(a-b)=cos[a-(π/2-a)]=cos(2a-π/2)=sin(2a)=2sinacosa
所以有sinacosa=sinbcosb,即sin2a=sin2b
可以得到2a=2b(就是这步有问题),之后可以得到ab+cd=1
3.(1)x^2+y^2-2x+12y+40=(x-2)^2+(y+6)^2+3,显然>=0
(2)x^2+y^2+xy=(x+y)^2-xy
又xy<=(x^2+y^2)/2
所以上式>=(x+y)^2-[(x+y)^2/2]>=(x+y)^2/2 非负
4.不如设a=sinα,b=sinβ,c=cosα,d=cosβ,反正只有一个答案,不如就特殊化
则可以得到:
sinαcosβ-cosαsinβ=sin(α-β)=1,cos(α-β)=0
又由条件2有1+cosα^2-sinαsinβ+cosαcosβ=1
即cos^2(α)=-cos(α-β)=0,所以取一种情况α=π/2,β=0
得到abcd=sinαsinβcosαcosβ=(sin2αsin2β)/4=0
5.不太清楚,想出来再告诉你吧,不好意思了
希望对你有帮助~~
展开全部
1.当A=2,B=十七分之一时,P最小值等于1987
2.A,B,C,D都等于零,所以ab+cd=0
3.<1>X的平方+Y的平方-2X+12Y+40
=X的平方-2X+1-1_Y的平方+12Y+36-36+40
=(X-1)的平方+(Y+6)的平方+4 (所以无论X,Y取何值都为正数)
2.A,B,C,D都等于零,所以ab+cd=0
3.<1>X的平方+Y的平方-2X+12Y+40
=X的平方-2X+1-1_Y的平方+12Y+36-36+40
=(X-1)的平方+(Y+6)的平方+4 (所以无论X,Y取何值都为正数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.P=2a平方+17b平方-16a-34b+2004
=2(a平方-8a+16)+17(b平方-2b+1)+1955
=2(a-4)平方+17(b-1)平方+1955
所以当a=4 b=1 值最小=1955
2.
3.<1> x平方+y平方-2x+12y+40
=(x平方-2x+1)+(y平方+12y+36)+3
=(x-1)平方+(y+6)平方+3
所以不论xy为几所得数都≥3,所以都为正数
=2(a平方-8a+16)+17(b平方-2b+1)+1955
=2(a-4)平方+17(b-1)平方+1955
所以当a=4 b=1 值最小=1955
2.
3.<1> x平方+y平方-2x+12y+40
=(x平方-2x+1)+(y平方+12y+36)+3
=(x-1)平方+(y+6)平方+3
所以不论xy为几所得数都≥3,所以都为正数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
前面四题答案都有了,我来解答第五题
x^2-yz=z^2-xy,可以得到x^2-z^2=yz-xy即(x-z)(x+z)=-y(x-z),
两种情况,
1,x-z=0时,等式成立,即x=z,y^2=xz=x^2,所以y=x,代入式子验证,可得只有当x=y=z=0时,才成立;
2,x-z≠0时,x+z=-y,即x+y+z=0
x^2-yz=z^2-xy,可以得到x^2-z^2=yz-xy即(x-z)(x+z)=-y(x-z),
两种情况,
1,x-z=0时,等式成立,即x=z,y^2=xz=x^2,所以y=x,代入式子验证,可得只有当x=y=z=0时,才成立;
2,x-z≠0时,x+z=-y,即x+y+z=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询