已知函数fx =(x-a)lnx

若函数在(0,+无穷)上为增函数,求a的取值范围... 若函数在(0,+无穷)上为增函数,求a的取值范围 展开
mike
2014-04-24 · 知道合伙人教育行家
mike
知道合伙人教育行家
采纳数:15109 获赞数:42256
担任多年高三教学工作。

向TA提问 私信TA
展开全部

f'(x)=lnx+(x-a)/x≥0

xlnx+x≥a

设g(x)=xlnx+x,x>0

g'(x)=2+lnx

当x∈(0,1/e&#178;)时,g'(x)<0,g(x)单调递减;

当x∈(1/e&#178;,+∞)时,g'(x)>0,g(x)单调递增

所以g(x)min=g(1/e&#178;)=-1/e&#178;

所以a≤-1/e&#178;

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友b20b593
高粉答主

推荐于2018-04-13 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.3亿
展开全部
fx =(x-a)lnx
f'(x)=lnx+(x-a)/x
函数在(0,+无穷)上为增函数

∴f'(x)=lnx+(x-a)/x>=0
lnx+1-a/x>=0
lnx +1>=a/x
∵x>0
∴xlnx+x>=a
设g(x)=xlnx+x
g'(x)=lnx+1+1=lnx +2
令g'(x)>=0
∴lnx>=-2
x>=1/e²
∴g(x)增区间是[1/e²,+∞)减区间是(0,1/e²]
∴g(X)最小值=g(1/e²)=-1/e²
∴a<=-1/e²
a的取值范围a<=-1/e²
如果你认可我的回答,请点击左下角的“采纳为满意答案”,祝学习进步!
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
HannYoung
2014-04-24 · 知道合伙人金融证券行家
HannYoung
知道合伙人金融证券行家
采纳数:4017 获赞数:18732
毕业某财经院校,就职于某国有银行二级分行。

向TA提问 私信TA
展开全部
f'(x) =(x-a)/x+lnx=lnx+1-a/x>0
a<x(lnx+1)
令g(x)=x(lnx+1)
g'(x)=lnx+1+x/x=lnx+2=0
x=1/e^2时,y取得最小值g(1/e^2)=-1/e^2
所以a<-1/e^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式