1方+2方+3方+……+(n-1)求Sn

zxqsyr
2010-08-08 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.7亿
展开全部
1^2+2^2+3^2+4^2+.......+(n-1)^2=?
解:利用恒等式(n+1)^3=n^3+3n^2+3n+1,可以得到:
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
..............................
3^3-2^3=(3*2)^2+3*2+1
2^3-1^3=(3*1)^2+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6

即1^2+2^2+3^2+....+(n-1)^2
=(n-1)n[2(n-1)+1]/6
=(n-1)n(2n-1)/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Jeckao
2010-08-08
知道答主
回答量:68
采纳率:0%
帮助的人:30.9万
展开全部
编程序比较快
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式