2个回答
展开全部
(a²+b²-c²)²-4a²b²
=(a²+b²-c²)^2-(2ab)²
=(a²+2ab+b²-c²)(a²-2ab+b²-c²)
=[(a+b)²-c²][(a-b)²-c²]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
边长大于0,a+b+c>0,
三角形两边之和大于第三边,
所以:
a+b>c,
a+b-c>0,
同理,a+c-b>0,
b+c>a,
a-b-c<0,
三正一负,所以相乘小于0,
即证:(a²+b²-c²)²-4a²b²<0
=(a²+b²-c²)^2-(2ab)²
=(a²+2ab+b²-c²)(a²-2ab+b²-c²)
=[(a+b)²-c²][(a-b)²-c²]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
边长大于0,a+b+c>0,
三角形两边之和大于第三边,
所以:
a+b>c,
a+b-c>0,
同理,a+c-b>0,
b+c>a,
a-b-c<0,
三正一负,所以相乘小于0,
即证:(a²+b²-c²)²-4a²b²<0
展开全部
(a²+b²-c²)²-4a²b²
=(a²+b²-c²)²-(2ab)²
=(a²+b²-c²+2ab)(a²+b²-c²-2ab)
=[(a+b)²-c²][(a-b)²-c²]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
∵a,b,c是三角形的三边,且三角形两边和大于第三边
∴a+b+c>0
a+b-c>0
a-b+c>0
a-b-c<0
∴(a+b+c)(a+b-c)(a-b+c)(a-b-c)<0
∴(a²+b²-c²)²-4a²b²<0
=(a²+b²-c²)²-(2ab)²
=(a²+b²-c²+2ab)(a²+b²-c²-2ab)
=[(a+b)²-c²][(a-b)²-c²]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
∵a,b,c是三角形的三边,且三角形两边和大于第三边
∴a+b+c>0
a+b-c>0
a-b+c>0
a-b-c<0
∴(a+b+c)(a+b-c)(a-b+c)(a-b-c)<0
∴(a²+b²-c²)²-4a²b²<0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询