二维随机变量(x,y)的概率密度为f(x,y)=e^-y,0<x<y,0其他,求边缘概率密度,高数

二维随机变量(x,y)的概率密度为f(x,y)=e^-y,0<x<y,0其他,求边缘概率密度,高数苦手啊... 二维随机变量(x,y)的概率密度为f(x,y)=e^-y,0<x<y,0其他,求边缘概率密度,高数苦手啊 展开
帐号已注销
2021-07-27 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

求随机变量X的密度fX(x),边沿分布fX(x)={e^(-y);0<x<y;{0

概率密度函数f(x,y)在直线x=0,y=x,y=-x+1所围的三角形区域的二重度积分,结果是1+e^(-1)-2e^(-1/2)

条件分布,应该写成 fX(x|Y=y)而非fξ(x|η=y),表示Y=y的条件分布,按题目意思,此处y理解为某一常数,则fX(x|Y=y)=f(x,y)/fY(y)=e^(-y)/ye^(-y)=1/y;fY(y)=ye^(-y)随机变量Y的边沿分布。

含义

则X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度。

单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。

教育小百科达人
2021-01-26 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

过程如下:

fX(x)=∫(x~无穷) f(x,y)dy 

=-e^zhi(-y)|(x~无穷)

=0-(-e^(-x))=e^(-x)

fY(y)=∫(0~y)f(x,y) dx 

=e^(-y) x |(0~y)= y e^(-y)

在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。

扩展资料:

随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。

如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
旅游小达人Ky
高粉答主

2021-01-26 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:39万
展开全部

|fX(x)=∫(x~无穷) f(x,y)dy

 =-e^(-y)|(x~无穷)

=0-(-e^(-x))=e^(-x)

fY(y)=∫(0~y)f(x,y) dx 

=e^(-y) x |(0~y)

= y e^(-y)

扩展资料

同的边缘分布可构成不同的联合分布,这反映出两个分量的结合方式不同,相依程度不同。这种差异在各自的边缘分布中没有表现,因而必须考察其联合分布。

对于高维情形的任何 k 维子向量 的分布称作 k 维边缘分布。可用类似二维的方法求出多维情形的边缘分布。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西江楼望月
推荐于2017-10-04 · TA获得超过7013个赞
知道大有可为答主
回答量:2918
采纳率:9%
帮助的人:1975万
展开全部
fX(x)=∫(x~无穷) f(x,y)dy =-e^(-y)|(x~无穷)=0-(-e^(-x))=e^(-x)

fY(y)=∫(0~y)f(x,y) dx =e^(-y) x |(0~y)= y e^(-y)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式