1个回答
展开全部
思路:由公式cos(a,b)=a.b/(│a│.│b│)知,只要知道向量a,b的点积大小a.b,以及向量a,b的模的乘积│a│.│b│,即可求得向量a,b的夹角的余弦值,并进而求出夹角的大小。 解答: ①a.b=(2e1+e2)(=-3e1+2e2)=-6│e1│^2+e1.e2+2│e2│^2=- 6+e1.e2+2=e1*e2-4 ∵cos(e1,e2)=e1.e2/(│e1││e2│) ∴e1.e2=│e1│.│e2│.cos(e1,e2)=1×1×cos60=0.5 ∴a.b=e1*e2-4=0.5-4=-3.5 ②│a│.│b│=sqrt(│a│^2.│b│^2)=sqrt(a.a+b.b)=sqrt(7×7)=7 ③cos(a,b)=a.b/(│a│.│b│)=-3.5/7=0.5 ∴向量a,b的夹角为120
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询