设S1=1+1/12+1/22,S2=1+1/22+1/32 ...Sn=1+1/n2+1/(n+1)2,S=√S1+√S2+…+√Sn ,那么S=
设S1=1+1/12+1/22,S2=1+1/22+1/32...Sn=1+1/n2+1/(n+1)2,S=√S1+√S2+…+√Sn,那么S=谢谢...
设S1=1+1/12+1/22,S2=1+1/22+1/32...Sn=1+1/n2+1/(n+1)2,S=√S1+√S2+…+√Sn,那么S=
谢谢 展开
谢谢 展开
2个回答
2014-07-22
展开全部
Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]=1+1/[n(n+1)]=1+1/n-1/(n+1)
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
....
√Sn=1+1/n-1/(n+1)
s=n+1-1/(n+1)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]=1+1/[n(n+1)]=1+1/n-1/(n+1)
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
....
√Sn=1+1/n-1/(n+1)
s=n+1-1/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询