设S1=1+1/12+1/22,S2=1+1/22+1/32 ...Sn=1+1/n2+1/(n+1)2,S=√S1+√S2+…+√Sn ,那么S=

设S1=1+1/12+1/22,S2=1+1/22+1/32...Sn=1+1/n2+1/(n+1)2,S=√S1+√S2+…+√Sn,那么S=谢谢... 设S1=1+1/12+1/22,S2=1+1/22+1/32...Sn=1+1/n2+1/(n+1)2,S=√S1+√S2+…+√Sn,那么S=
谢谢
展开
姊徦裝赽樂
2014-07-21
知道答主
回答量:7
采纳率:0%
帮助的人:11.6万
展开全部
你可以先试试数学归纳法,直接法我先想想,晚上上图
追问
谢谢,我已经解出了,答案是n加1分之n平方+2n,对了提问数字后面的2是平方,打错了
追答

有一个小疏忽,最后答案后面再加个n

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-07-22
展开全部
Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]=1+1/[n(n+1)]=1+1/n-1/(n+1)
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
....
√Sn=1+1/n-1/(n+1)
s=n+1-1/(n+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式