函数y=xcosx在(负无穷,正无穷)内是否有界?又当x趋近于正无穷时,这个函数是否为无穷大?
3个回答
展开全部
无界,也非无穷大。
x=2kπ且k→∞时,y→∞,所以无界;
x=2kπ+(π/2)且k→∞时,y=0,不是无穷大。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。
函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数的特性
1、有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
2、单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
展开全部
无界,也非无穷大。
x=2kπ且k→∞时,y→∞,所以无界;
x=2kπ+(π/2)且k→∞时,y=0,不是无穷大。
x=2kπ且k→∞时,y→∞,所以无界;
x=2kπ+(π/2)且k→∞时,y=0,不是无穷大。
追问
能不能把解答过程写出来,上面写的只有例子,谢谢
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无界,不是的。
因为cosx为跳跃函数。
因为cosx为跳跃函数。
追问
怎样写过程呢
追答
照楼下的,举反例。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询