高中数学题求解。

韩增民松
2014-10-18 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2759万
展开全部
已知x1>0,x2>0且x1+x2=1,则x1log(2,x1)+x2log(2,x2)的最小值为-1。
(1)x1>0,x2>0且x1+x2=m,求证:x1log(2,x1)+x2log(2,x2)≥-m+mlog(2,m);
(2)已知xi>0(i=1,2,3,4)且x1+x2+x3+x4=1,求证:x1log(2,x1)+x2log(2,x2)+ x3log(2,x3)+x4log(2,x4)≥-2;
(3)已知xi>0(i=1,2,3,4,5,6,7,8)且x1+x2+x3+…+x8=1,类比(2)给出一个你认为正确的结论,并证明你的结论.

log(2,x1)表示以2为底,x2的对数

(1)证明:∵x1>0,x2>0且x1+x2=1,则x1log(2,x1)+x2log(2,x2)的最小值为-1
设x1+x2=m,则m>0
两边同除以m,得x1/m+x2/m=1
∴x1/mlog(2,x1/m)+x2/mlog(2,x2/m)≥-1
==>x1[log(2,x1)-log(2,m)]+x2[log(2,x2)-log(2,m)]≥-m
==>x1log(2,x1)+x2log(2,x2)-(x1+x2)log(2,m)≥-m
==>x1log(2,x1)+x2log(2,x2)-mlog(2,m)≥-m
∴x1log(2,x1)+x2log(2,x2)≥-m+mlog(2,m);

(2)证明:∵xi>0(i=1,2,3,4)且x1+x2+x3+x4=1,
设x1+x2=m,x3+x4=n,则m>0,n>0,m+n=1
∴x1/mlog(2,x1/m)+x2/mlog(2,x2/m)≥-1;x3/nlog(2,x3/n)+x4/nlog(2,x4/n)≥-1
∵m>0,n>0,m+n=1
∴mlog(2,m)+nlog(2,n)≥-1;
由(1)可知
x1log(2,x1)+x2log(2,x2)≥-m+mlog(2,m);x3log(2,x3)+x4log(2,x4)≥-n+nlog(2,m);
∴x1log(2,x1)+x2log(2,x2)+x3log(2,x3)+x4log(2,x4)≥-(m+n)+mlog(2,m)+nlog(2,n)
∴x1log(2,x1)+x2log(2,x2)+x3log(2,x3)+x4log(2,x4)≥-2

(3)xi>0(i=1,2,3,4,5,6,7,8)且x1+x2+x3+…+x8=1
则x1log(2,x1)+x2log(2,x2)+x3log(2,x3)+…+x8log(2,x8)≥-3.
证明:设x1+x2+x3+x4=m,x5+x6+x7+x8=n,
∴x1/m+x2/m+x3/m+x4/m=1,x5/n+x6/n+x7/n+x8/n=1,m>0,n>0,m+n=1
∴mlog(2,m)+nlog(2,n)≥-1;
由(2)可知x1/mlog(2,x1/m)+x2/mlog(2,x2/m)+x3/mlog(2,x3/m)+x4/mlog(2,x4/m)≥-2;x5/nlog(2,x5/n)+x6/nlog(2,x6/n)+x7/nlog(2,x7/n)+x8/nlog(2,x8/n)≥-2
∴x1/mlog(2,x1/m)+x2/mlog(2,x2/m)+…+x8/nlog(2,x8/n)≥-2(m+n)+mlog(2,m)+nlog(2,n)≥-3
百度网友521cf22
2014-10-17 · TA获得超过137个赞
知道小有建树答主
回答量:455
采纳率:0%
帮助的人:166万
展开全部
你把x2写成1-x1 即可,后面自己写
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
武汉初高数学余老师
2014-10-17
知道答主
回答量:5
采纳率:0%
帮助的人:6899
展开全部
构造函数去求
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式