已知函数f(x)=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1(x∈R).
(1)求函数f(x)的最小正周期及在区间[0,π/2]上的最大值和最小值;(2)若函数f(x)=9/5,x∈[-π/6,π/6],求cos2x的值....
(1)求函数f(x)的最小正周期及在区间[0,π/2]上的最大值和最小值;
(2)若函数f(x)=9/5,x∈[-π/6,π/6],求cos2x的值. 展开
(2)若函数f(x)=9/5,x∈[-π/6,π/6],求cos2x的值. 展开
2个回答
展开全部
【参考答案】
f(x)=(1/2)×[(1+cos2x)/2]-(√3 /2)sin2x-(1/2)×[(1-cos2x)/2]+1
=(1/4)+(1/4)cos2x-(√3 /2)sin2x-(1/4)+(1/4)cos2x+1
=(1/2)cos2x-(√3 /2)sin2x+1
=sin(π/6- 2x)+1
=1-sin(2x -π/6)
第一题:
最小正周期是T=2π/2=π
当x∈[0, π/2]时,2x- π/6∈[-π/6,5π/6],sin(2x- π/6)∈[-1/2,1]
所以 最大值是3/2,最小值是0
第二题:
f(x)=9/5即
sin(2x- π/6)=-4/5
当x∈[-π/6, π/6]时,2x- π/6∈[-π/2, π/6],
则 cos(2x- π/6)=√[1-(-4/5)^2]=3/5
故cos2x=cos[(2x- π/6)+π/6]
=cos(2x- π/6)cos(π/6)+sin(2x- π/6)sin(π/6)
=(3/5)×(√3 /2)+(-4/5)×(1/2)
=(3√3 -4)/10
欢迎追问。。。
f(x)=(1/2)×[(1+cos2x)/2]-(√3 /2)sin2x-(1/2)×[(1-cos2x)/2]+1
=(1/4)+(1/4)cos2x-(√3 /2)sin2x-(1/4)+(1/4)cos2x+1
=(1/2)cos2x-(√3 /2)sin2x+1
=sin(π/6- 2x)+1
=1-sin(2x -π/6)
第一题:
最小正周期是T=2π/2=π
当x∈[0, π/2]时,2x- π/6∈[-π/6,5π/6],sin(2x- π/6)∈[-1/2,1]
所以 最大值是3/2,最小值是0
第二题:
f(x)=9/5即
sin(2x- π/6)=-4/5
当x∈[-π/6, π/6]时,2x- π/6∈[-π/2, π/6],
则 cos(2x- π/6)=√[1-(-4/5)^2]=3/5
故cos2x=cos[(2x- π/6)+π/6]
=cos(2x- π/6)cos(π/6)+sin(2x- π/6)sin(π/6)
=(3/5)×(√3 /2)+(-4/5)×(1/2)
=(3√3 -4)/10
欢迎追问。。。
展开全部
f(x)
=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1
=(1/2)cos2x-(√3/2)sin2x+1
=cos(2x+π/3)+1
(1)
最小正周期=2π/2=π
x∈[0,π/2]
2x+π/3∈[π/3,4π/3]
cos(2x+π/3)∈[-1,1/2]
cos(2x+π/3)+1∈[0,3/2]
最大值=3/2,最小值=0
(2)
cos(2x+π/3)+1=9/5
cos(2x+π/3)=4/5
x∈[-π/6,π/6]
2x∈[-π/3,π/3]
2x+π/3∈[0,2π/3]
∴sin(2x+π/3)=3/5
cos2x
=cos(2x+π/3-π/3)
=cos(2x+π/3)cosπ/3+sin(2x+π/3)sinπ/3
=(4+3√3)/10
如果你认可我的回答,请点击“采纳回答”,祝学习进步!
=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1
=(1/2)cos2x-(√3/2)sin2x+1
=cos(2x+π/3)+1
(1)
最小正周期=2π/2=π
x∈[0,π/2]
2x+π/3∈[π/3,4π/3]
cos(2x+π/3)∈[-1,1/2]
cos(2x+π/3)+1∈[0,3/2]
最大值=3/2,最小值=0
(2)
cos(2x+π/3)+1=9/5
cos(2x+π/3)=4/5
x∈[-π/6,π/6]
2x∈[-π/3,π/3]
2x+π/3∈[0,2π/3]
∴sin(2x+π/3)=3/5
cos2x
=cos(2x+π/3-π/3)
=cos(2x+π/3)cosπ/3+sin(2x+π/3)sinπ/3
=(4+3√3)/10
如果你认可我的回答,请点击“采纳回答”,祝学习进步!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询