若矩阵A的特征值为λ,则A的逆的特征值为1/λ,为什么?

 我来答
Dilraba学长
高粉答主

2019-05-28 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411030

向TA提问 私信TA
展开全部

Aα=λα.两边同乘A^-1

α=λ(A^-1)α

即(A^-1)α=(1/λ)α

则A的逆桥桐蔽的特征值为1/λ

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的轮埋矩阵的集合。

扩展资料

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对敏州于的每一个特征值,求出齐次线性方程组。

[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.

梦色十年
高粉答主

2019-07-16 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:93.3万
展开全部

Aα=λα.两边同乘A^-1

α=λ(A^-1)α

即(A^-1)α=(1/λ)α

则A的逆的特征值为1/λ

如将特征值此山的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。

扩展资料

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式

第二步:求出特征方程的全部根,即为的森蚂中全部特征值;

第三步:对于的每一个特征值,求出齐物滚次线性方程组

[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友4d78602
推荐于2018-03-10 · TA获得超过1571个赞
知道小有建树答主
回答量:337
采纳率:100%
帮助的人:152万
展开全部
Aα=λα.两边老梁同乘A^-1
α=λ(A^-1)α

即(A^-1)α=(1/λ)α

则穗散A的逆的特征值为猜含氏1/λ
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式