如图,△ABC中,AD⊥BC于D点,E为BD上的一点,EG∥AD,分别交AB和CA的延长线于F、G两点,∠AFG=∠AGF.(

如图,△ABC中,AD⊥BC于D点,E为BD上的一点,EG∥AD,分别交AB和CA的延长线于F、G两点,∠AFG=∠AGF.(1)求证:△ABD≌△ACD;(2)若∠AB... 如图,△ABC中,AD⊥BC于D点,E为BD上的一点,EG∥AD,分别交AB和CA的延长线于F、G两点,∠AFG=∠AGF.(1)求证:△ABD≌△ACD;(2)若∠ABC=40°,求∠GAF的大小. 展开
 我来答
萌小殇3068
2014-09-01 · 超过57用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:111万
展开全部
(1)证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°.
∵GE∥AD,
∴∠CAD=∠AGF,∠BFE=∠BAD,
∵∠BFE=∠AFG,∠AFG=∠AGF,
∴∠CAD=∠BAD;
在△ABD和△ACD中
∠CDA=∠BDA
AD=AD
∠CAD=∠BAD

∴△ABD≌△ACD(ASA).

(2)解:∵∠B=40°,∠BEG=90°,
∴∠BFE=∠AFG=50°,
∵∠AFG=∠G,
∴∠GAF=180°-50°-50°=80°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式