已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B
已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)...
已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)
展开
1个回答
展开全部
当a=0时,f(x)=-3x2+1=0,解得x=±
,函数f(x)有两个零点,不符合题意,应舍去;
当a>0时,令f′(x)=3ax2-6x=3ax(x-
)=0,解得x=0或x=
>0,列表如下:
∵x→-∞,f(x)→-∞,而f(0)=1>0,
∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.
当a<0时,f′(x)=3ax2-6x=3ax(x-
)=0,解得x=0或x=
<0,列表如下:
而f(0)=1>0,x→+∞时,f(x)→-∞,
∴存在x0>0,烂肢宽使得f(x0)=0,
∵f(x)存在唯一的零点x0,且x0>0,
∴极小值f(
)>0,化为a2>4,
∵a<0,∴a<-2.
综上可知:a的取值范围是(-∞,-2).
故选:C.
| ||
3 |
当a>0时,令f′(x)=3ax2-6x=3ax(x-
2 |
a |
2 |
a |
x | (-∞,0) | 0 | (0,
|
| (
| ||||||
f′(x) | + | 0 | - | 0 | + | ||||||
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.
当a<0时,f′(x)=3ax2-6x=3ax(x-
2 |
a |
2 |
a |
x | (-∞,
|
| (
| 0 | (0,+∞) | ||||||
f′(x) | - | 0 | + | 0 | - | ||||||
f(x) | 单调递减饥毁 | 极小值 | 单调递增 | 极大值 | 饥亮单调递减 |
∴存在x0>0,烂肢宽使得f(x0)=0,
∵f(x)存在唯一的零点x0,且x0>0,
∴极小值f(
2 |
a |
∵a<0,∴a<-2.
综上可知:a的取值范围是(-∞,-2).
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询