
(2011?东城区二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分别为BC,BB1的中点,四边形B1BCC1是
(2011?东城区二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分别为BC,BB1的中点,四边形B1BCC1是边长为6的正方形.(Ⅰ)求证:A1B∥...
(2011?东城区二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分别为BC,BB1的中点,四边形B1BCC1是边长为6的正方形.(Ⅰ)求证:A1B∥平面AC1D;(Ⅱ)求证:CE⊥平面AC1D;(Ⅲ)求二面角C-AC1-D的余弦值.
展开
1个回答
展开全部
证明:
(Ⅰ)连接A1C,与AC1交于O点,连接OD.
因为O,D分别为AC1和BC的中点,
所以OD∥A1B.
又OD?平面AC1D,A1B?平面AC1D,
所以A1B∥平面AC1D.(4分)
证明:(Ⅱ)在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,又AD?平面ABC,
所以BB1⊥AD.
因为AB=AC,D为BC中点,
所以AD⊥BC.又BC∩BB1=B,
所以AD⊥平面B1BCC1.
又CE?平面B1BCC1,
所以AD⊥CE.
因为四边形B1BCC1为正方形,D,E分别为BC,BB1的中点,
所以Rt△CBE≌Rt△C1CD,∠CC1D=∠BCE.
所以∠BCE+∠C1DC=90°.
所以C1D⊥CE.
又AD∩C1D=D,
所以CE⊥平面AC1D. (9分)
解:(Ⅲ)如图,以B1C1的中点G为原点,建立空间直角坐标系.
则A(0,6,4),E(3,3,0),C(-3,6,0),C1(-3,0,0).
由(Ⅱ)知CE⊥平面AC1D,所以
=(6,?3,0)为平面AC1D的一个法向量.
设n=(x,y,z)为平面ACC1的一个法向量,
=(?3,0,?4),
=(0,?6,0).
由
可得
因为O,D分别为AC1和BC的中点,
所以OD∥A1B.
又OD?平面AC1D,A1B?平面AC1D,
所以A1B∥平面AC1D.(4分)
证明:(Ⅱ)在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,又AD?平面ABC,
所以BB1⊥AD.
因为AB=AC,D为BC中点,
所以AD⊥BC.又BC∩BB1=B,
所以AD⊥平面B1BCC1.
又CE?平面B1BCC1,
所以AD⊥CE.
因为四边形B1BCC1为正方形,D,E分别为BC,BB1的中点,
所以Rt△CBE≌Rt△C1CD,∠CC1D=∠BCE.
所以∠BCE+∠C1DC=90°.
所以C1D⊥CE.
又AD∩C1D=D,
所以CE⊥平面AC1D. (9分)
解:(Ⅲ)如图,以B1C1的中点G为原点,建立空间直角坐标系.
由(Ⅱ)知CE⊥平面AC1D,所以
CE |
设n=(x,y,z)为平面ACC1的一个法向量,
AC |
CC1 |
由
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载