1个回答
展开全部
解:原式=lim(x->0)[(x-arctanx)/(x^2*arctanx)] (通分)
=lim(x->0)[(x/arctanx)*((x-arctanx)/x^3)]
=[lim(x->0)(x/arctanx)]*{lim(x->0)[(x-arctanx)/x^3]}
=1*{lim(x->0)[(x-arctanx)/x^3]}
=lim(x->0)[(x-arctanx)/x^3]
=lim(x->0)[(x-arctanx)'/(x^3)'] (0/0型极限,应用罗比达法则)
=lim(x->0)[(1/3)/(1+x^2)]
=(1/3)/(1+0)
=1/3。
=lim(x->0)[(x/arctanx)*((x-arctanx)/x^3)]
=[lim(x->0)(x/arctanx)]*{lim(x->0)[(x-arctanx)/x^3]}
=1*{lim(x->0)[(x-arctanx)/x^3]}
=lim(x->0)[(x-arctanx)/x^3]
=lim(x->0)[(x-arctanx)'/(x^3)'] (0/0型极限,应用罗比达法则)
=lim(x->0)[(1/3)/(1+x^2)]
=(1/3)/(1+0)
=1/3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询