在数列{an}中,已知a1=20,a2=30,an+1=3an-an-1(n∈N*,n≥2).(1)当n=2,3时,分别求an2-an-1an+1
在数列{an}中,已知a1=20,a2=30,an+1=3an-an-1(n∈N*,n≥2).(1)当n=2,3时,分别求an2-an-1an+1的值,判断an2-an-...
在数列{an}中,已知a1=20,a2=30,an+1=3an-an-1(n∈N*,n≥2).(1)当n=2,3时,分别求an2-an-1an+1的值,判断an2-an-1an+1是否为定值,并给出证明;(2)求出所有的正整数n,使得5an+1an+1为完全平方数.
展开
展开全部
(1)由已知得a3=70,a4=180.
所以n=2时,an2-an-1an+1=-500;当n=3时,an2-an-1an+1=-500.…(2分)
猜想:an2-an-1an+1=-500(n≥2). …(3分)
下面用数学归纳法证明:
①当n=2时,结论成立.
②假设当n=k(k≥2,k∈N*)时,结论成立,即ak2-ak-1ak+1=-500,
将ak-1=3ak-ak+1,代入上式,可得ak2-3akak+1+ak+12=-500.
则当n=k+1时,ak+12-ak+1ak+2=ak+12-ak(3ak+1-ak)=ak+12-3akak+1+ak2=-500.
故当n=k+1结论成立,
根据①,②可得,an2-an-1an+1=-500(n≥2)成立.…(5分)
(2)将an-1=3an-an+1代入an2-an-1an+1=-500,得an2-3anan+1+an+12=-500,
则5an-1an+1=(an+an+1)2+500,5an-1an+1+1=(an+an+1)2+501,
设5an-1an+1+1=t2(t∈N*),则t2-(an+an+1)2+501,
即[t-(an+an+1)][t+(an+an+1)]=501,…(7分)
又an+an+1∈N,且501=1×501=3×167,
故
或
所以
所以n=2时,an2-an-1an+1=-500;当n=3时,an2-an-1an+1=-500.…(2分)
猜想:an2-an-1an+1=-500(n≥2). …(3分)
下面用数学归纳法证明:
①当n=2时,结论成立.
②假设当n=k(k≥2,k∈N*)时,结论成立,即ak2-ak-1ak+1=-500,
将ak-1=3ak-ak+1,代入上式,可得ak2-3akak+1+ak+12=-500.
则当n=k+1时,ak+12-ak+1ak+2=ak+12-ak(3ak+1-ak)=ak+12-3akak+1+ak2=-500.
故当n=k+1结论成立,
根据①,②可得,an2-an-1an+1=-500(n≥2)成立.…(5分)
(2)将an-1=3an-an+1代入an2-an-1an+1=-500,得an2-3anan+1+an+12=-500,
则5an-1an+1=(an+an+1)2+500,5an-1an+1+1=(an+an+1)2+501,
设5an-1an+1+1=t2(t∈N*),则t2-(an+an+1)2+501,
即[t-(an+an+1)][t+(an+an+1)]=501,…(7分)
又an+an+1∈N,且501=1×501=3×167,
故
|
|
所以
|