设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;

设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中... 设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长. 展开
 我来答
百度网友62750a4
推荐于2016-02-02 · 超过57用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:137万
展开全部
(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC
∴2sinBcosA=sin(A+C)
∵A+C=π-B
∴sin(A+C)=sinB>0
∴2sinBcosA=sinB
∴cosA=
1
2

∵A∈(0,π)
∴A=
π
3

(Ⅱ)∵b=2,c=1,A=
π
3

∴a 2 =b 2 +c 2 -2bccosA=3
∴b 2 =a 2 +c 2
∴B=
π
2

∵D为BC的中点,
∴AD=
1 2 + (
3
2
)
2
=
7
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式