一个关于均值不等式的问题,
已知2a²+b²=2,求a²+a²b²的最值。我的思路:令t=a²+a²b²,∴2t=2a...
已知2a²+b²=2,求a²+a²b²的最值。
我的思路:
令t=a²+a²b²,
∴2t=2a²(1+b²)≤[(2a²+b²+1)÷2]²------------------①
∵2a²+b²=2,
∴2a²+b²+1=3,------------------------------②
∴2t≤[2a²+b²+1)÷2]²=4/9
主要是想问①式的变形是否正确,
假如已知2a²+b²+1=3,求(2a²+1)b²的最值和求2a²(b²+1)的最值是一样的么? 展开
我的思路:
令t=a²+a²b²,
∴2t=2a²(1+b²)≤[(2a²+b²+1)÷2]²------------------①
∵2a²+b²=2,
∴2a²+b²+1=3,------------------------------②
∴2t≤[2a²+b²+1)÷2]²=4/9
主要是想问①式的变形是否正确,
假如已知2a²+b²+1=3,求(2a²+1)b²的最值和求2a²(b²+1)的最值是一样的么? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询