1个回答
展开全部
k﹤1且k≠0 |
因为关于x的一元二次方程kx 2 -6x+9=0有两个不相等的实数根,所以根的判别式△=b 2 -4ac>0,建立关于k的不等式,解得k的取值范围,还要考虑二次项系数不为0.=36-36k>0,即k<1,且k≠0. 解:∵方程有两个不相等的实数根, ∴△=b 2 -4ac.=36-36k>0,即k<1,且k≠0. 那么实数k的取值范围是k<1且k≠0. 本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件. 总结:一元二次方程根的情况与判别式△的关系: (1)△>0?方程有两个不相等的实数根; (2)△=0?方程有两个相等的实数根; (3)△<0?方程没有实数根. |
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询