如图,已知半径为1的⊙O1与x轴交于A,B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B
如图,已知半径为1的⊙O1与x轴交于A,B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.(1)求二次函数的解析式;(2)射线OM从y...
如图,已知半径为1的⊙O1与x轴交于A,B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.(1)求二次函数的解析式;(2)射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,几秒后射线OM与⊙O1相切?(切点为M)(3)当射线OM与⊙O1相切时,在射线OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
展开
1个回答
展开全部
(1)∵圆心O1的坐标为(2,0),⊙O1的半径是1,
∴点A(1,0),B(3,0),
∵二次函数y=-x2+bx+c的图象经过A,B两点,
∴
,
解得
,
∴二次函数解析式为y=-x2+4x-3;
(2)∵OM是⊙O1的切线,
∴O1M⊥OM,
∵OM1=
OO1=1,
∴∠O1OM=30°,
①OM在第一象限时,射线OM旋转了90°-30°=60°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了60°÷15°=4秒;
②由对称性可知OM在第四象限内与⊙O1相切于点M,
射线OM旋转了90°+30°=120°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了120°÷15°=8秒;
综上所述,4秒或8秒后射线OM与⊙O1相切;
(3)存在.
①OM在第一象限时,过点A作AP1⊥x轴交OM于P1,可得Rt△OP1A∽Rt△△OO1M,
P1A=OA?tan30°=1×
=
,
∴点P1(1,
∴点A(1,0),B(3,0),
∵二次函数y=-x2+bx+c的图象经过A,B两点,
∴
|
解得
|
∴二次函数解析式为y=-x2+4x-3;
(2)∵OM是⊙O1的切线,
∴O1M⊥OM,
∵OM1=
1 |
2 |
∴∠O1OM=30°,
①OM在第一象限时,射线OM旋转了90°-30°=60°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了60°÷15°=4秒;
②由对称性可知OM在第四象限内与⊙O1相切于点M,
射线OM旋转了90°+30°=120°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了120°÷15°=8秒;
综上所述,4秒或8秒后射线OM与⊙O1相切;
(3)存在.
①OM在第一象限时,过点A作AP1⊥x轴交OM于P1,可得Rt△OP1A∽Rt△△OO1M,
P1A=OA?tan30°=1×
| ||
3 |
| ||
3 |
∴点P1(1,
|