如图1,抛物线y=ax2-10ax+8与x轴交于A、C两点,与y 轴交于点B,且C点的坐标为(2,0)(1)求抛物线的函

如图1,抛物线y=ax2-10ax+8与x轴交于A、C两点,与y轴交于点B,且C点的坐标为(2,0)(1)求抛物线的函数表达式和A、B两点的坐标;(2)如图,设点D是线段... 如图1,抛物线y=ax2-10ax+8与x轴交于A、C两点,与y 轴交于点B,且C点的坐标为(2,0)(1)求抛物线的函数表达式和A、B两点的坐标;(2)如图,设点D是线段OA上的一个动点,过点D作DE⊥x轴交AB于点E,过点E作EF⊥y轴,垂足为F.记OD=x,矩形ODEF的面积为S,求S与x之间的函数关系式,并求出S的最大值及此时点D的坐标;(3)设抛物线的对称轴与AB交于点P(如图2),点Q是抛物线上的一个动点,点R是x轴上的一个动点.请求出当以P、Q、R、A为顶点的四边形是平行四边形时,点Q的坐标. 展开
 我来答
七颜TA0238
推荐于2016-12-01 · TA获得超过167个赞
知道答主
回答量:133
采纳率:0%
帮助的人:175万
展开全部
(1)∵y=ax2-10ax+8,
∴抛物线的对称轴为:x=-
b
2a
=-
?10a
2a
=5,
令x=0,得到y=8,
∴点B的坐标为(0,8),
∵点C坐标为:(2,0),
∵点A与点C关于对称轴x=5对称,
∴点A坐标为:(8,0),
将C(2,0)代入y=ax2-10ax+8得:4a-20a+8=0,
∴a=
1
2

则抛物线的函数表达式为y=
1
2
x2-5x+8;

(2)∵A(8,0),B(0,8),
∴设直线AB的解析式为y=kx+b,
把A和B坐标代入得:
8k+b=0
b=8
'
解得:
k=?1
b=8

∴直线AB解析式为y=-x+8,
由OD=x,即E横坐标为x,
代入直线AB解析式得:y=-x+8,即ED=-x+8,
则矩形的面积S=x(-x+8)=-x2+8x,0<x<8,
当x=-
b
2a
=4,即D(4,0)时,S有最大值,最大值为16;

(3)根据题意画出图形,如图所示:

存在符合条件的点Q和R,使以P,R,Q,A为顶点的四边形为平行四边形,
若Q在对称轴右边,把x=5代入直线AB解析式,解得y=3,即Q纵坐标为3,
把y=3代入抛物线解析式得:3=
1
2
x2-5x+8 解得:x=5±
15

当Q的纵坐标为-3,还有点(5±
3
,-3)
即 Q的坐标为:(5+
15
,3)(5-
15
,3)或(5+
3
,-3)(5-
3
,-3).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式