如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.求证:(1)HF=HG;(2)∠F
如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.求证:(1)HF=HG;(2)∠FHG=∠DAC....
如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.求证:(1)HF=HG;(2)∠FHG=∠DAC.
展开
1个回答
展开全部
解答:证明:(1)连接AF,BG,
∵AC=AD,BC=BE,F、G分别是DC、CE的中点,
∴AF⊥BD,BG⊥AE.
在直角三角形AFB中,
∵H是斜边AB中点,
∴FH=
AB.
同理得HG=
AB,
∴FH=HG.
(2)∵FH=BH,
∴∠HFB=∠FBH;
∵∠AHF是△BHF的外角,
∴∠AHF=∠HFB+∠FBH=2∠BFH;
同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH,
∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.
又∵∠DAC=180°-∠ADB-∠ACD,
=180°-2∠ADB,
=180°-2(∠BFH+∠AGH),
=180°-2∠BFH-2∠AGH,
=180°-∠AHF-∠BHG,
而根据平角的定义可得:∠FHG=180°-∠AHF-∠BHG,
∴∠FHG=∠DAC.
∵AC=AD,BC=BE,F、G分别是DC、CE的中点,
∴AF⊥BD,BG⊥AE.
在直角三角形AFB中,
∵H是斜边AB中点,
∴FH=
1 |
2 |
同理得HG=
1 |
2 |
∴FH=HG.
(2)∵FH=BH,
∴∠HFB=∠FBH;
∵∠AHF是△BHF的外角,
∴∠AHF=∠HFB+∠FBH=2∠BFH;
同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH,
∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.
又∵∠DAC=180°-∠ADB-∠ACD,
=180°-2∠ADB,
=180°-2(∠BFH+∠AGH),
=180°-2∠BFH-2∠AGH,
=180°-∠AHF-∠BHG,
而根据平角的定义可得:∠FHG=180°-∠AHF-∠BHG,
∴∠FHG=∠DAC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询