如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.(1)求证:AF

如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.(1)求证:AF⊥BE;(2)试探究线段AO、BO、GO的长... 如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.(1)求证:AF⊥BE;(2)试探究线段AO、BO、GO的长度之间的数量关系;(3)若GO:CF=4:5,试确定E点的位置. 展开
 我来答
度渡DU2568
2014-12-22 · TA获得超过139个赞
知道答主
回答量:148
采纳率:0%
帮助的人:74.4万
展开全部
(1)见解析   (2)BO=AG=AO+OG   (3)AE= AD


试题分析:(1)证明:∵ABCD为正方形,且DE=CF,
∴AE=DF,AB=AD,∠BAE=∠ADF=90°,
∴△ABE≌△DAF,
∴∠ABE=∠DAF,又∵∠ABE+∠AEB=90°,
∴∠DAF+∠AEB=90°,
∴∠AOE=90°,即AF⊥BE;
(2)解:BO=AO+OG.
理由:由(1)的结论可知,
∠ABE=∠DAF,∠AOB=∠DGA=90°,AB=AD,
则△ABO≌△DAG,
所以,BO=AG=AO+OG;
(3)解:过E点作EH⊥DG,垂足为H,
由矩形的性质,得EH=OG,
∵DE=CF,GO:CF=4:5,∴EH:ED=4:5,
∵AF⊥BE,AF⊥DG,∴OE∥DG,
∴∠AEB=∠EDH,△ABE∽△HED,
∴AB:BE=EH:ED=4:5,
在Rt△ABE中,AE:AB=3:4,
故AE:AD=3:4,
即AE= AD.

点评:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质.关键是利用正方形的性质证明全等三角形,相似三角形,利用线段,角的关系解题.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式