已知数列{an}满足:a1=6,an+1=n+2nan+(n+1)(n+2).(1)若dn=ann(n+1),求数列{dn}的通项公式;(2
已知数列{an}满足:a1=6,an+1=n+2nan+(n+1)(n+2).(1)若dn=ann(n+1),求数列{dn}的通项公式;(2)若bn=an(n+1)(n+...
已知数列{an}满足:a1=6,an+1=n+2nan+(n+1)(n+2).(1)若dn=ann(n+1),求数列{dn}的通项公式;(2)若bn=an(n+1)(n+2)?2n+1,记数列{bn}的前n项和为Tn,求Tn.
展开
1个回答
展开全部
(1)∵数列{an}满足:a1=6,an+1=
an+(n+1)(n+2),
∴等式两边同除(n+1)(n+2),得:
=
+1,
又
=3,∴{
}是首项为3、公差为1的等差数列,
∴dn=
=3+(n-1)=n+2.
(2)由(1)得an=n(n+1)(n+2),
∴bn=
?2n+1=n?2n+1,
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
?n×2n+2
=2n+2-4-n×2n+2 ,
=-4-(n-1)×2n+2,
∴Tn =(n-1)?2n+2+4.
n+2 |
n |
∴等式两边同除(n+1)(n+2),得:
an+1 |
(n+1)(n+2) |
an |
n(n+1) |
又
a1 |
1×2 |
an |
n(n+1) |
∴dn=
an |
n(n+1) |
(2)由(1)得an=n(n+1)(n+2),
∴bn=
an |
(n+1)(n+2) |
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
4(1?2n) |
1?2 |
=2n+2-4-n×2n+2 ,
=-4-(n-1)×2n+2,
∴Tn =(n-1)?2n+2+4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询