已知函数f(x)=sinx-cosx,f′(x)是f(x)的导函数,求函数t(x)=2f(x)f′(x-1)的值域和对称轴
已知函数f(x)=sinx-cosx,f′(x)是f(x)的导函数,求函数t(x)=2f(x)f′(x-1)的值域和对称轴....
已知函数f(x)=sinx-cosx,f′(x)是f(x)的导函数,求函数t(x)=2f(x)f′(x-1)的值域和对称轴.
展开
展开全部
∵函数f(x)=sinx-cosx,∴f′(x)=cosx+sinx,f′(x-1)=cos(x-1)+sin(x-1).
故函数t(x)=2f(x)f′(x-1)=(2sinx-2cosx)[cos(x-1)+sin(x-1)]=2sinxcos(x-1)+2sinssin(x-1)-2cosxcos(x-1)-2cosxsin(x-1)
=2sin[x-(x-1)]-2cos[x+(x-1)]=2sin1-2cos(2x-1).
∵-1≤cos(2x-1)≤1,∴2sin1-2≤2sin1-2cos(2x-1)≤2sin1+2,∴函数的值域为[2sin1-2 2sin1+2].
令2x-1=kπ,k∈z,可得 x=
,k∈z,故对称轴为 x=
,k∈z.
故函数t(x)=2f(x)f′(x-1)=(2sinx-2cosx)[cos(x-1)+sin(x-1)]=2sinxcos(x-1)+2sinssin(x-1)-2cosxcos(x-1)-2cosxsin(x-1)
=2sin[x-(x-1)]-2cos[x+(x-1)]=2sin1-2cos(2x-1).
∵-1≤cos(2x-1)≤1,∴2sin1-2≤2sin1-2cos(2x-1)≤2sin1+2,∴函数的值域为[2sin1-2 2sin1+2].
令2x-1=kπ,k∈z,可得 x=
kπ+1 |
2 |
kπ+1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询