利用函数的单调性比较大小:(1)sin508°与sin144°; (2)cos760...
利用函数的单调性比较大小:(1)sin508°与sin144°;(2)cos760°与cos(-770°)(3)tan(-π5)与tan(-3π7)....
利用函数的单调性比较大小:(1)sin508°与sin144°; (2)cos760°与cos(-770°)(3)tan(-π5)与tan(-3π7).
展开
展开全部
(1)sin508°=sin(360°+148°)=sin148°
∵正弦函数y=sinx在(
,π)上单调递减,余哪
∴sin148°<sin144°,
∴sin508°<sin144°;
(2)cos760°=cos(720°+40°)=cos40°,
cos(-770°)=cos770°=cos50°,
∵盯毁蚂余弦函数y=cosx在(0,π)上单调递减,
∴cos40°>cos50°,
∴cos760°>cos(-770°),;
(3)∵正切函数y=tanx在(?
,
)上单调递增,
且?
<-
<?
<
,
∴tan(-
)>凯埋tan(-
).
∵正弦函数y=sinx在(
π |
2 |
∴sin148°<sin144°,
∴sin508°<sin144°;
(2)cos760°=cos(720°+40°)=cos40°,
cos(-770°)=cos770°=cos50°,
∵盯毁蚂余弦函数y=cosx在(0,π)上单调递减,
∴cos40°>cos50°,
∴cos760°>cos(-770°),;
(3)∵正切函数y=tanx在(?
π |
2 |
π |
2 |
且?
π |
2 |
3π |
7 |
π |
5 |
π |
2 |
∴tan(-
π |
5 |
3π |
7 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询