(2011?石景山区一模)已知:如图,正方形ABCD中,AC,BD为对角线,将∠BAC绕顶点A逆时针旋转α°(0<α

(2011?石景山区一模)已知:如图,正方形ABCD中,AC,BD为对角线,将∠BAC绕顶点A逆时针旋转α°(0<α<45),旋转后角的两边分别交BD于点P、点Q,交BC... (2011?石景山区一模)已知:如图,正方形ABCD中,AC,BD为对角线,将∠BAC绕顶点A逆时针旋转α°(0<α<45),旋转后角的两边分别交BD于点P、点Q,交BC,CD于点E、点F,连接EF,EQ.(1)在∠BAC的旋转过程中,∠AEQ的大小是否改变?若不变写出它的度数;若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究△APQ与△AEF的面积的数量关系,写出结论并加以证明. 展开
 我来答
皆恋秩4056
推荐于2016-12-01 · 超过52用户采纳过TA的回答
知道答主
回答量:119
采纳率:100%
帮助的人:112万
展开全部
解:(1)不变,其度数为:45°;
设对角线交于O点,
由题意可知∠BAE=α°,∠OAQ=α°,所以∠BAE=∠OAQ
因为∠ABE=∠AOQ=90°
所以△ABE∽△AOQ
∴AB:AO=AE:AQ
所以AB/AE=AO/AQ,又因为∠BAO=∠EAQ=45°,
所以△BAO∽△EAQ,
所以∠AEQ=∠ABO=45°,
所以∠AEQ的度数不变;

(2)结论:S△AEF=2S△APQ
证明:∵∠AEQ=45°,∠EAF=45°
∴∠EQA=90°
AE=
2
AQ

过点Q作QG⊥AE于点G,
同理可得,AF=
2
AP

过点P作PH⊥AF于H,
∴S△AEF=
1
2
AF?EQ=
1
2
×
2
AP?AQ
=
2
2
AP?AQ=PH?AQ=2S
△APQ
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式