在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=
在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC.设∠BAC=α,∠BCE=β.(1...
在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC.设∠BAC=α,∠BCE=β.(1)如图1,如果∠BAC=90°,∠BCE=______度;(2)如图2,你认为α、β之间有怎样的数量关系?并说明理由.(3)当点D在线段BC的延长线上移动时,α、β之间又有怎样的数量关系?请在备用图上画出图形,并直接写出你的结论.
展开
展开全部
∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC,∠DAE=∠EAC+∠DAC;
∴∠CAE=∠BAD;
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°;
(2)由(1)中可知β=180°-α,
∴α、β存在的数量关系为α+β=180°;
(3)连接AD,作AE使得∠DAE=∠BAC,AE=AD,连接DE、CE,可得下图:
∵∠BAD=∠BAC+∠CAD,∠CAE=∠DAE+∠CAD,∴∠BAD=∠CAE;
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC.
∴α、β存在的数量关系为α+β=180°;
∴∠CAE=∠BAD;
在△ABD和△ACE中,
|
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°;
(2)由(1)中可知β=180°-α,
∴α、β存在的数量关系为α+β=180°;
(3)连接AD,作AE使得∠DAE=∠BAC,AE=AD,连接DE、CE,可得下图:
∵∠BAD=∠BAC+∠CAD,∠CAE=∠DAE+∠CAD,∴∠BAD=∠CAE;
在△ABD和△ACE中,
|
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC.
∴α、β存在的数量关系为α+β=180°;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询