谁来帮帮忙

 我来答
匿名用户
2015-04-05
展开全部
两角和差公式
  两角和与差的三角函数公式
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ-cosαsinβ
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  二倍角公式
  二倍角的正弦、余弦和正切公式(升幂缩角公式)
  sin2α=2sinαcosα
  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan2α=2tanα/[1-tan^2(α)]
  半角公式
  半角的正弦、余弦和正切公式(降幂扩角公式)
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
  万能公式
  sinα=2tan(α/2)/[1+tan^2(α/2)]
  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
  tanα=2tan(α/2)/[1-tan^2(α/2)]
  万能公式推导
  附推导:
  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).*,
  (因为cos^2(α)+sin^2(α)=1)
  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
  然后用α/2代替α即可.
  同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.
  三倍角公式
  三倍角的正弦、余弦和正切公式
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
  三倍角公式推导
  附推导:
  tan3α=sin3α/cos3α
  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
  上下同除以cos^3(α),得:
  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
  =2sinαcos^2(α)+(1-2sin^2(α))sinα
  =2sinα-2sin^3(α)+sinα-2sin^3(α)
  =3sinα-4sin^3(α)
  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
  =(2cos^2(α)-1)cosα-2cosαsin^2(α)
  =2cos^3(α)-cosα+(2cosα-2cos^3(α))
  =4cos^3(α)-3cosα
  即
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
  三倍角公式联想记忆
  ★记忆方法:谐音、联想
  正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
  余弦三倍角:4元3角 减 3元(减完之后还有“余”)
  ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示.
  ★另外的记忆方法:
  正弦三倍角:山无司令 (谐音为 三无四立) 三指的是"3倍"sinα,无指的是减号,四指的是"4倍",立指的是sinα立方
  余弦三倍角:司令无山 与上同理
  和差化积公式
  三角函数的和差化积公式
  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
  积化和差公式
  三角函数的积化和差公式
  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
  和差化积公式推导
  附推导:
  首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
  我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
  所以,sina*cosb=(sin(a+b)+sin(a-b))/2
  同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
  同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
  所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
  同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
  这样,我们就得到了积化和差的四个公式:
  sina*cosb=(sin(a+b)+sin(a-b))/2
  cosa*sinb=(sin(a+b)-sin(a-b))/2
  cosa*cosb=(cos(a+b)+cos(a-b))/2
  sina*sinb=-(cos(a+b)-cos(a-b))/2
  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
  把a,b分别用x,y表示就可以得到和差化积的四个公式:
  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
奋斗不息550
2015-04-05
知道答主
回答量:28
采纳率:0%
帮助的人:3.5万
展开全部
  • 这个课本上面有的,

更多追问追答
追问
我没找到
我没找到
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友3e28367
2015-04-05
知道答主
回答量:29
采纳率:0%
帮助的人:5.6万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式