已知f(x)=x^3+ax^2+bx+c在x=1与x=-2时,都取得极值.

已知f(x)=x^3+ax^2+bx+c在x=1与x=-2时,都取得极值.(1)求a,b的值.(2)若x属于[-3,2]时.有极小值0,求c的值... 已知f(x)=x^3+ax^2+bx+c在x=1与x=-2时,都取得极值.
(1) 求a,b的值.
(2) 若x属于[-3,2]时. 有极小值0,求c的值
展开
我不是他舅
2010-08-09 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:35亿
展开全部
1、
f'(x)=3x²+2ax+b=0
x=1和-2都有极值
所以x=1和-2是方程的根
由韦达定理
2a/3=-(-2+1)=1
b/3=-2*1=-2
a=3/2,b=-6

2、
f'(x)=3x²+3x-6
所以-2<x<1,f'(x)<0,减函数
x>1是增函数,所以x=1有极小值
所以f(1)=0
1+3/2-6+c=0
c=7/2
匿名用户
2010-08-09
展开全部
f'(x)=3x^2+2ax+b=0的解为1,-2
代入得:
3+2a+b=0
12-4a+b=0
=>a=1.5,b=-6
=>f(x)=x^3+1.5x^2-6x+c
f(1)=1+1.5-6+c=c-3.5
f(-2)=-8+6+12+c=c+10
故min f(x)=f(1)=c-3.5,x∈[-3,2]
即c-3.5=0
c=3.5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式