抽屉原理
请大家帮我解释这道题:一个集合含有10个互不相同的两位数,试证:这个集合必有2个无公共元素的集合,此两子集的各数之和相等...
请大家帮我解释这道题:一个集合含有10个互不相同的两位数,试证:这个集合必有2个无公共元素的集合,此两子集的各数之和相等
展开
1个回答
展开全部
原集合的非空子集个数:
S=C(10,1)+C(10,2)+...+C(10,10)=2^10-1=1023 [式中C(10,1)表示从10个元素中任取1个元素的组合数,依次类推]
又∵任取一个子集,其各数之和为T,必定有
10+11+12+13+14≤T≤99+98+...+90
即63≤T≤945
∴可以构造子集中各数之和的抽屉,抽屉个数为(935-63+1=)873
将1023个子集放入以上873个抽屉
根据抽屉原理,必有至少2个子集放入同一抽屉
故一定存在2个不同的子集,其元素之和相等;
划去它们共有的数字,
可得两个无公共元素的非空子集,其所含各数之和相等
S=C(10,1)+C(10,2)+...+C(10,10)=2^10-1=1023 [式中C(10,1)表示从10个元素中任取1个元素的组合数,依次类推]
又∵任取一个子集,其各数之和为T,必定有
10+11+12+13+14≤T≤99+98+...+90
即63≤T≤945
∴可以构造子集中各数之和的抽屉,抽屉个数为(935-63+1=)873
将1023个子集放入以上873个抽屉
根据抽屉原理,必有至少2个子集放入同一抽屉
故一定存在2个不同的子集,其元素之和相等;
划去它们共有的数字,
可得两个无公共元素的非空子集,其所含各数之和相等
斯科信息技术
2023-10-12 广告
2023-10-12 广告
价格还是要有购买数量等因素来定的。以上内容如果还觉得不够全面,也可以沟通下深圳市斯科信息技术有限公司。深圳市斯科信息技术有限公司是一家专业致力于智能终端设备生产销售的公司。主要生产销售智能柜体、图书分拣设备等产品,质量上乘,结实耐用,价格合...
点击进入详情页
本回答由斯科信息技术提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询