初中阶段涉及求最值的方法有哪些
1个回答
展开全部
最值与极值的区别就是,极大值可能是最大值,可能不是最大值,与谁比较?-------端点函数值
极小值可能是最小值,也可能不是最小值,与谁比较?------端点函数值
所以,知识点要掌握两个问题:1、所在区间?区间端点处的函数值;
2、如何求极值?
方法有二:图形法、函数法,图形法比较简单易懂,建议你多熟悉各种函数的图形绘制方法
1、 对于抛物线 f(x)=ax²+bx+c 端点函数值为f(t1)=at1²+bt1+c f(t2)=at2²+bt2+c
绘制出抛物线的图形,根据其开口方向,即可判断函数有最大值还是最小值
a>0时,图形开口向下,图形有最大值,最大值点为顶点,最小值点在区间端点处取得
a
极小值可能是最小值,也可能不是最小值,与谁比较?------端点函数值
所以,知识点要掌握两个问题:1、所在区间?区间端点处的函数值;
2、如何求极值?
方法有二:图形法、函数法,图形法比较简单易懂,建议你多熟悉各种函数的图形绘制方法
1、 对于抛物线 f(x)=ax²+bx+c 端点函数值为f(t1)=at1²+bt1+c f(t2)=at2²+bt2+c
绘制出抛物线的图形,根据其开口方向,即可判断函数有最大值还是最小值
a>0时,图形开口向下,图形有最大值,最大值点为顶点,最小值点在区间端点处取得
a
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询