根据均匀分布的概率密度怎么求出的分布函数,求详解

 我来答
教育小百科达人
2018-10-06 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:466万
展开全部

已知概率密度f(x),那么求F(x)对f(x)进行积分即可,在x<a时,f(x)都等于0,显然积分F(x)=0

而在a<x<b时,f(x)=1/(b-a)

不定积分结果为x/(b-a),代入上下限x和a

于是在a到x上积分得到概率为(x-a)/(b-a)

那么x大于等于b时,概率就等于1,所以得到了上面的式子

扩展资料:

分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。

1.定义

设X为连续型随机变量,其密度函数为  ,则有对上式两端求关于x的导数得这正是连续型随机变量X的分布函数与密度函数之间的关系。

2.几种常见的连续性随机变量的分布函数

(1)设  ,则随机变量X的分布函数为 

(2)设  ,则随机变量X的分布函数为 

(3)设  ,则随机变量的分布函数为 

对于  ,其分布函数为 

参考资料:百度百科-分布函数

帐号已注销
2018-10-06 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15万
展开全部

已知概率密度f(x),那么求F(x)对f(x)进行积分即可,在x<a时,f(x)都等于0,显然积分F(x)=0

而在a<x<b时,f(x)=1/(b-a)

不定积分结果为x/(b-a),代入上下限x和a

于是在a到x上积分得到概率为(x-a)/(b-a)

那么x大于等于b时,概率就等于1,所以得到了上面的式子

扩展资料:

分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。

离散性随机变量X的分布列为 由概率的可列可加性得  ,即  其中和式是对满足  的一切k求和.

离散型随机变量的分布函数是分段函数,  的间断点就是离散型随机变量的各可能取值点,并且在其间断点处右连续.离散型随机变量 的分布函数  的图形是阶梯形曲线.

 在  的一切有(正)概率的点  ,皆有一个跳跃,其跳跃度正好为  取值  的概率  ,而在分布函数  的任何一个连续点x上,  取值x的概率皆为零。

离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。

参考资料:百度百科-分布函数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一个人郭芮
高粉答主

2016-01-03 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84689

向TA提问 私信TA
展开全部
已知概率密度f(x),
那么求F(x)对f(x)进行积分即可,
在x<a时,f(x)都等于0,
显然积分F(x)=0
而在a<x<b时,f(x)=1/(b-a)
不定积分结果为x/(b-a),代入上下限x和a
于是在a到x上积分得到概率为(x-a)/(b-a)
那么x大于等于b时,概率就等于1,
所以得到了上面的式子
追问
谢谢
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
慎骊洁9M
2020-09-14 · TA获得超过498个赞
知道小有建树答主
回答量:550
采纳率:100%
帮助的人:25.6万
展开全部
已知概率密度f(x),那么求F(x)对f(x)进行积分即可,在x<a时,f(x)都等于0,显然积分F(x)=0 而在
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
7628502
2021-12-12 · TA获得超过304个赞
知道小有建树答主
回答量:184
采纳率:75%
帮助的人:28.7万
展开全部
别看其他的满嘴废话,变上限积分,把概率密度f(t)积分,区间从负无穷到x。即可得到分布函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式