高等数学第二版问题
求下述极限:limn→无穷{[1/(n²+1)]+[2/(n²+2)]+[3/(n²+3)]+...+[n/(n²+n)]}...
求下述极限:limn→无穷{[1/(n²+1)]+[2/(n²+2)]+[3/(n²+3)]+...+[n/(n²+n)]}
展开
展开全部
记 a = 1/(n^2+1)+2/(n^2+2)+...+n/(n^2+n)
b = 1/(n^2+n)+2/(n^2+n)+...+n/(n^2+n)
= (1/2)n(n+1)/(n^2+n)
C = 1/(n^2+1)+2/(n^2+1)+...+n/(n^2+1)
= (1/2)n(n+1)/(n^2+1)
则 b < a < c
lim<n→∞> b = 1/2, lim<n→∞> c = 1/2,
则 lim<n→∞> a = 1/2。
b = 1/(n^2+n)+2/(n^2+n)+...+n/(n^2+n)
= (1/2)n(n+1)/(n^2+n)
C = 1/(n^2+1)+2/(n^2+1)+...+n/(n^2+1)
= (1/2)n(n+1)/(n^2+1)
则 b < a < c
lim<n→∞> b = 1/2, lim<n→∞> c = 1/2,
则 lim<n→∞> a = 1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询