展开全部
首先因为x^2-xy+y^2=(x-0.5y)^2+0.75y^2≥0,
现在题目说x+y=x^2-xy+y^2,所以x+y>=0。
下面说明如果原方程有整数解,那么解不可能出现负数。
否则,假设y<0.而x+y>=0,故xy<=0,
因而x^2-xy+y^2>=x^2+y^2,所以x>x+y>=x^2+y^2,但x是整数,
所以必有x<=x^2,而y^2>0,故得到x<=
x^2+y^2,矛盾!
同理,x也不可能是负数。于是x>=0,y>=0。
在x+y=x^2-xy+y^2两边同时乘以x+y,得到(x+y)^2=x^3+y^3,但是要注意到如果x,y都大于2的话,那么x^3+y^3=x*x^2+y*y^2>2x^2+2y^2,而(2x^2+2y^2)-(x+y)^2=(x-y)^2>=0。
因而x^3+y^3>2x^2+2y^2>=(x+y)^2,所以此时方程无整数解!从而可知x,y中至少有一个不超过2.。先假设x不超过2,但x又是非负整数,那么它只可能取0,1或2。
分别代入原方程解得x=0,y=0或x=0,y=1或x=1,y=0或x=1,y=2或x=2,y=1或x=2,y=2。
同理假设y不超过2,也可得到(或由x,y的对称性得)
x=0,y=0或x=0,y=1或x=1,y=0或x=1,y=2或x=2,y=1或x=2,y=2。
所以原不定方程的所有整数解为x=0,y=0或x=0,y=1或x=1,y=0或x=1,y=2或x=2,y=1或x=2,y=2。一共有六组。
现在题目说x+y=x^2-xy+y^2,所以x+y>=0。
下面说明如果原方程有整数解,那么解不可能出现负数。
否则,假设y<0.而x+y>=0,故xy<=0,
因而x^2-xy+y^2>=x^2+y^2,所以x>x+y>=x^2+y^2,但x是整数,
所以必有x<=x^2,而y^2>0,故得到x<=
x^2+y^2,矛盾!
同理,x也不可能是负数。于是x>=0,y>=0。
在x+y=x^2-xy+y^2两边同时乘以x+y,得到(x+y)^2=x^3+y^3,但是要注意到如果x,y都大于2的话,那么x^3+y^3=x*x^2+y*y^2>2x^2+2y^2,而(2x^2+2y^2)-(x+y)^2=(x-y)^2>=0。
因而x^3+y^3>2x^2+2y^2>=(x+y)^2,所以此时方程无整数解!从而可知x,y中至少有一个不超过2.。先假设x不超过2,但x又是非负整数,那么它只可能取0,1或2。
分别代入原方程解得x=0,y=0或x=0,y=1或x=1,y=0或x=1,y=2或x=2,y=1或x=2,y=2。
同理假设y不超过2,也可得到(或由x,y的对称性得)
x=0,y=0或x=0,y=1或x=1,y=0或x=1,y=2或x=2,y=1或x=2,y=2。
所以原不定方程的所有整数解为x=0,y=0或x=0,y=1或x=1,y=0或x=1,y=2或x=2,y=1或x=2,y=2。一共有六组。
展开全部
x=xy-y
x=(x-1)y
y=1+1/(x-1)
随便代数呗
x=0
y=0
x=2
y=2
x=3
y=1.5 不合题意舍去
x=4
Y=4/3 不合题意舍去
x=5
y=1.25 不合题意舍去
所以整数解为x=0,y=0和x=2,y=2
x=(x-1)y
y=1+1/(x-1)
随便代数呗
x=0
y=0
x=2
y=2
x=3
y=1.5 不合题意舍去
x=4
Y=4/3 不合题意舍去
x=5
y=1.25 不合题意舍去
所以整数解为x=0,y=0和x=2,y=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据等式的对称性,x=y,所以2x=x^2,x=0,y=0或x=2,y=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
都是0 都是2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询