高数微积分第19 28求大神帮忙
2个回答
展开全部
19.
定积分为常数,设f(x)=x²-ax+b
f(x)=x²-x∫[0:2]f(x)dx+2∫[0:1]f(x)dx
x²-ax+b=x²-x∫[0:2](x²-ax+b)dx+2∫[0:1](x²-ax+b)dx
b=2∫[0:1](x²-ax+b)dx
=2(⅓x³-½ax²+bx)|[0:1]
=2(⅓·1³-½a·1²+b·1)-2(⅓·0³-½a·0²+b·0)
=⅔-a+2b
a-b=⅔ ①
a=∫[0:2](x²-ax+b)dx
=(⅓x³-½ax²+bx)|[0:2]
=(⅓·2³-½a·2²+b·2)-(⅓·0³-½a·0²+b·0)
=8/3 -2a+2b
3a-2b=8/3 ②
联立①、②,解得a=4/3,b=2/3
f(x)=x²-(4/3)x+⅔
定积分为常数,设f(x)=x²-ax+b
f(x)=x²-x∫[0:2]f(x)dx+2∫[0:1]f(x)dx
x²-ax+b=x²-x∫[0:2](x²-ax+b)dx+2∫[0:1](x²-ax+b)dx
b=2∫[0:1](x²-ax+b)dx
=2(⅓x³-½ax²+bx)|[0:1]
=2(⅓·1³-½a·1²+b·1)-2(⅓·0³-½a·0²+b·0)
=⅔-a+2b
a-b=⅔ ①
a=∫[0:2](x²-ax+b)dx
=(⅓x³-½ax²+bx)|[0:2]
=(⅓·2³-½a·2²+b·2)-(⅓·0³-½a·0²+b·0)
=8/3 -2a+2b
3a-2b=8/3 ②
联立①、②,解得a=4/3,b=2/3
f(x)=x²-(4/3)x+⅔
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询