负数如何比较大小
比较两个负数大小的方法:
1、比较绝对值,绝对值大的反而小。
2、在数轴线上,越靠近0越大。
负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。
一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,最早记载负数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。
扩展资料:
负数基本信息
1、负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a。
2、负数中没有最小的数,也没有最大的数。
3、去除负数前的负号等于这个负数的绝对值。
如-2、-5.33、-45等:-2的绝对值为2,-5.33的绝对值为5.33,-45的绝对值为45等。
4、分数也可做负数,如:-2/5。
5、负数的平方根用虚数单位“i”表示。(实数范围内负数没有平方根)。
6、最大的负整数为:-1
7、没有最小的负数。
负数大小的比较方法刚好跟正数相反。
比如,1和5比,当然5大,但是-1和-5相比是-1比较大。
总之负数的比较方法是,数值大的反而越小,数值小的反而越大。
负数是数学术语,指小于0的实数,如−3。负数是同绝对值正数的相反数。任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号(Minus Sign,即相当于减号)“-”标记,如−2,−5.33,−45,−0.6等。
负数是数学术语,指小于0的实数,如−3。负数是同绝对值正数的相反数。任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号(Minus Sign,即相当于减号)“-”标记,如−2,−5.33,−45,−0.6等。
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。
刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”
参考资料
互动百科.互动百科[引用时间2017-12-20]
例如:比较 -3与-5
因为 |-3|=3< |-5|=5
所以 |-3|>|-5|