
f(x) = 2sin^2(π/4+x)-根号3cos2x-1 详细要求在下面
X∈R若函数h(x)=f(x+a)的图像关于点(-π/3,0)对称,且a属于(0,π),则a等于?...
X∈R 若函数h(x)= f(x+a)的图像关于点(-π/3,0)对称,且a属于(0,π),则a等于?
展开
1个回答
2016-08-15
展开全部
f(x) = 2sin²(π/4+x)-√3cos2x-1
= 1 - cos{π/2+2x) - √3cos2x - 1
= - cos{π/2+2x) - √3cos2x
= sin2x - √3cos2x
= 2(sin2xcosπ/3-cos2xsinπ/3)
= 2sin(2x-π/3)
h(x) = f(x+a) = 2sin(2x+a-π/3)
图像关于点(-π/3,0)对称
2sin{2*(-π/3)+a-π/3}=0
2sin(-π+a}=0
sina=0
a=0或π
= 1 - cos{π/2+2x) - √3cos2x - 1
= - cos{π/2+2x) - √3cos2x
= sin2x - √3cos2x
= 2(sin2xcosπ/3-cos2xsinπ/3)
= 2sin(2x-π/3)
h(x) = f(x+a) = 2sin(2x+a-π/3)
图像关于点(-π/3,0)对称
2sin{2*(-π/3)+a-π/3}=0
2sin(-π+a}=0
sina=0
a=0或π
追答
f(x) = 2sin²(π/4+x)-√3cos2x-1
= 1 - cos{π/2+2x) - √3cos2x - 1
= - cos{π/2+2x) - √3cos2x
= sin2x - √3cos2x
= 2(sin2xcosπ/3-cos2xsinπ/3)
= 2sin(2x-π/3)
h(x) = f(x+a) = 2sin(2x+2a-π/3)
图像关于点(-π/3,0)对称
2sin{2*(-π/3)+2a-π/3}=0
2sin(-π+2a}=0
sin2a=0
a=π/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询