已知曲线c的参数方程为x=2t y=4t²(t为参数)直线l:yx-y-1=0.
(2)过点m(0,2)与直线l’与直线c交于A,B两点,试求∣MA∣+∣MB∣的值.
打错了 直线l是x-y-1=0. 展开
(1)
C: y = (2t)² = x², 此为开心向上,过原点的抛物线。
直线x - y - 1 = 0, y = x - 1, 斜率k = 1, 且过(0, -1)
设想将直线向上平移,直至与抛物线相切,设此时直线为y = x + a
与抛物线联立:y = x² = x + a
x² - x - a = 0 (i)
其判别式1+4a = 0, a = -1/4
代入(i): x² - x + 1/4 = (x - 1/2)² = 0
x = 1/2
切点为(1/2, 1/4)
与直线的距离为d = |1/2 - 1/4 - 1|/√2 = 3√2/8
此即为最小距离
(2)
题目表述不清,假定是过M(0, 2)的直线与抛物线交于A, B; 求|MA|+|MB|的最小值
令过M的直线斜率为k, 方程为y = kx + 2
A(u, U), B(v, V), U = ku + 2, V = kv + 2
与抛物线联立: x² - kx - 2 = 0
u+v = k, uv = -2
d = |MA|+|MB| = √[(u - 0)² + (U - 2)²]+√[(u - 0)² + (U - 2)²]
= √[(u - 0)² + (ku +2 - 2)²]+√[(v - 0)² + (kv + 2 - 2)²]
= |u|√(1+k²) + +|v|√(1+k²)
= (|u|+|v|)√(1+k²)
=√(|u|+|v|)²*√(1+k²) = √(u² + v² + 2|uv|)*√(1+k²)
= √[(u+v)² -2uv + 2|uv|]*√(1+k²)
= √[(k²+4 + 4)(k² + 1)]
=√[(k² + 1)(k² + 8)]
显然k = 0时,d最小,为√8