圆锥曲线证明题~~~!!!!

设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,又M是其准线上一点,试证直线MA、MF、MB的斜率成等差数列。... 设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,又M是其准线上一点,试证直线MA、MF、MB的斜率成等差数列。 展开
qcx3223
2010-08-12
知道答主
回答量:13
采纳率:0%
帮助的人:16.1万
展开全部
设点M(-p/2,h) A(a,b) B(m,n) 直线AB方程为 y=d(x-p/2) 令其与抛物线方程联立得到一个二次方程 再根据韦达定理可以得到 am=p^2/4 bn=-p^2 分别用a b表示m n 即A B坐标都用a b 表示 然后根据题目条件kMA+kMB=2kMF 将已知量代入可以得到一个有 a b p h 的方程 再根据b^2=2pa把a换成b 最后得到这个方程恒成立 得证 (说的比较简略 你自己算算吧 这样做计算量还少点)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式