极限的运算法则的证明怎么证明
2个回答
展开全部
极限的运算法则的证明怎么证明
先证lim[f(x)+-g(x)]=limf(x)+-limg(x)由limf(x)=A,limg(x)=B,得到f(x)=A+a,g(x)=B+b,其中a,b为无穷小,于是有f(x)+-g(x)=(A+a)+-(B+b)=(A+-B)+(a+-b)由于无穷小量a和b所以 lim[f(x)+-g(x)]=A+-B=limf(x)+-g(x)极限乘法的证明也类似,楼主可以自己证.再证lim[f(x)/g(x)]=limf(x)/limg(x)=A/B,B不为0同样的有f(x)=A+a,g(x)=B+b 设 r=f(x)/g(x)-A/B 即r=(A+a)*(B+b)-A/B=(Ba-Ab)/[B(B+b)]r看作2个数的乘积,其中Ba-Ab是无穷小,转而证明1/[B(B+b)]在x的某一邻域内有界,即证明了r的极限为0,命题成立.由于limg(x)=B由极限定理可知 存在x,当x属于u(x)时,|g(x)|>|B|/2,从而|1/g(x)|
先证lim[f(x)+-g(x)]=limf(x)+-limg(x)由limf(x)=A,limg(x)=B,得到f(x)=A+a,g(x)=B+b,其中a,b为无穷小,于是有f(x)+-g(x)=(A+a)+-(B+b)=(A+-B)+(a+-b)由于无穷小量a和b所以 lim[f(x)+-g(x)]=A+-B=limf(x)+-g(x)极限乘法的证明也类似,楼主可以自己证.再证lim[f(x)/g(x)]=limf(x)/limg(x)=A/B,B不为0同样的有f(x)=A+a,g(x)=B+b 设 r=f(x)/g(x)-A/B 即r=(A+a)*(B+b)-A/B=(Ba-Ab)/[B(B+b)]r看作2个数的乘积,其中Ba-Ab是无穷小,转而证明1/[B(B+b)]在x的某一邻域内有界,即证明了r的极限为0,命题成立.由于limg(x)=B由极限定理可知 存在x,当x属于u(x)时,|g(x)|>|B|/2,从而|1/g(x)|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询