lim(x~0)[sin6x+xf(x)]/x^3=0
说明函数sin6x+xf(x)为x^3的高阶无穷小
所以设sin6x+xf(x)=o(x^3)
所以f(x)=[o(x^3)-sin6x]/x
所以lim(x~0)[f(x)+6]/x^2
=lim(x~0){[o(x^3)-sin6x]/x+6}/x^2
=lim(x~0)[o(x^3)+6x-sin6x]/x^3
=lim(x~0)o(x^3)/x^3+lim(x~0)(6x-sin6x)/x^3
=lim(x~0)6(1-cos6x)/3x^2
=lim(x~0)2[1/2(6x)^2]/x^2
=36