请问这个数学题目怎么做????急急急

 我来答
sinerpo
2016-12-26 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5065
采纳率:100%
帮助的人:3398万
展开全部
证明:由积分中值定理,存在η∈(0,1/2)使
2∫[0→1/2] xf(x) dx=2*ηf(η)*(1/2)=ηf(η)=f(1)
令g(x)=xf(x),则g(η)=ηf(η)=f(1),g(1)=f(1)
因此g(x)在[η,1]内满足罗尔中值定理条件,
即存在ξ∈(η,1),使g'(ξ)=0,且g'(x)=f(x)+xf '(x)
因此:g'(ξ)=0即:f(ξ)+ξf '(ξ)=0.证毕

参考: ①积分中值定理:若函数 f(x) 在 闭区间 [a, b]上连续,,则在积分区间 [a, b]上至少存在一个点 ξ,使下式成立 ∫ f(x)dx=f(ξ)(b-a) ( a≤ ξ≤ b) ②罗尔定理:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ<b),使得f'(ξ)=0
更多追问追答
追问
微分中值定理是怎样的?
追答
微分中值定理包括:
罗尔定理、拉格朗日中值定理,柯西中值定理和泰勒中值定理.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式