设函数f(x)=x-1/x,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,则实数M的取值范围是_______ 答案(m<-1)

chenyuanyi08
2010-08-10 · TA获得超过1443个赞
知道小有建树答主
回答量:593
采纳率:0%
帮助的人:327万
展开全部
解: 显然m≠0, f(mx)=mx-1/mx
=>f(mx)+mf(x)=mx-1/mx+m-m/x<0
=>2mx<(1+m^2)/m
①m>0时 x<(1+m^2)/m^2 不能满足,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,故舍去
②m<0时,x>(1+m^2)/m^2 要是不等式成立(1+m^2)/m^2 <1,解得m<-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式