求解下题 要过程
展开全部
原式=∫[0~π/2]x/[2cos²(x/2)]·dx
=∫[0~π/睁段2]x/岁燃cos²(x/2)·d(x/2)
=∫[0~π/2]x·sec²(x/2)·d(x/2)
=∫[0~π/2]x·d[tan(x/2)]
=x·tan(x/乎早虚2) |[0~π/2]
-∫[0~π/2]tan(x/2)·dx
=π/4-2∫[0~π/2]tan(x/2)·d(x/2)
=π/4+2ln[cos(x/2)] |[0~π/2]
=π/4-ln2
=∫[0~π/睁段2]x/岁燃cos²(x/2)·d(x/2)
=∫[0~π/2]x·sec²(x/2)·d(x/2)
=∫[0~π/2]x·d[tan(x/2)]
=x·tan(x/乎早虚2) |[0~π/2]
-∫[0~π/2]tan(x/2)·dx
=π/4-2∫[0~π/2]tan(x/2)·d(x/2)
=π/4+2ln[cos(x/2)] |[0~π/2]
=π/4-ln2
追问
辛苦了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询