如何判断一个矩阵相似于对角矩阵

 我来答
帐号已注销
2021-01-18 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

n阶矩阵若有n个线性无关的特征向量,则它相似于对角矩阵

先求特征值;

求特征值对应的特征向量;

现在就可以判断一个矩阵能否对角化:

若矩阵的n重特征值对应n个线性无关的特征向量,则它可以对角化,否则不可以。

令P=[P1,P2,……,Pn],其中P1,P2,Pn是特征向量

则P^(-1)AP为对角矩阵,其对角线上的元素为相应的特征值。

扩展资料:

对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。

参考资料来源:百度百科-对角矩阵

一个人郭芮
高粉答主

2017-08-12 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84684

向TA提问 私信TA
展开全部
判断矩阵是否相似于对角矩阵
首先求其n个特征值
再求出每个特征值对应的特征向量
如果有n个特征向量
此矩阵就可以相似于对角矩阵
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式