如何用spss对数据进行标准化处理
2个回答
2019-10-09 · 百度认证:SPSSAU官方账号,优质教育领域创作者
关注
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
展开全部
SPSS统计分析软件是我最早接触的数据分析工具,我的博客将陆续介绍SPSS统计分析软件的相关内容,这类文章将统一按照在标题或者正文第一段出现 SPSS案例分析 + 编号 的形式组织,便于读者朋友们快速查询、收集,今天是第一篇,即 SPSS案例分析1,后文将不再说明。
--------------------------------------------------------------->
进行多元统计分析时,我们往往要收集不同量纲的数据,比如销售总额(万元),利润率(百分数)。这表现为变量在数量级和计量单位上的差别,从而使得各个变量之间不具有综合性,而多元分析方法大多对变量要特殊的要求,比如符合正态分布或者变量之间具有可比性。这时就必须采用某种方法对各变量数值进行标准化处理,或者叫无量纲化处理,解决各数值不具综合性的问题。
spss提供了很方便的数据标准化方法,这里只介绍Z标准化方法。即每一变量值与其平均值之差除以该变量的标准差。无量纲化后各变量的平均值为0,标准差为1,从而消除量纲和数量级的影响。该方法是目前多变量综合分析中使用最多的一种方法。在原始数据呈正态分布的情况下,利用该方法进行数据无量纲处理是较合理的。
spss的实现步骤:图例
【1】分析——描述统计——描述
【2】弹出逗描述统计地对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选逗将标准化得分另存为变量地,最后点击确定。
【3】返回SPSS的逗数据视图地,在原始变量的最后多了一列Z开头的新变量,这个变量就是标准化后的变量了。基于此字段可以做其他分析。
--------------------------------------------------------------->
进行多元统计分析时,我们往往要收集不同量纲的数据,比如销售总额(万元),利润率(百分数)。这表现为变量在数量级和计量单位上的差别,从而使得各个变量之间不具有综合性,而多元分析方法大多对变量要特殊的要求,比如符合正态分布或者变量之间具有可比性。这时就必须采用某种方法对各变量数值进行标准化处理,或者叫无量纲化处理,解决各数值不具综合性的问题。
spss提供了很方便的数据标准化方法,这里只介绍Z标准化方法。即每一变量值与其平均值之差除以该变量的标准差。无量纲化后各变量的平均值为0,标准差为1,从而消除量纲和数量级的影响。该方法是目前多变量综合分析中使用最多的一种方法。在原始数据呈正态分布的情况下,利用该方法进行数据无量纲处理是较合理的。
spss的实现步骤:图例
【1】分析——描述统计——描述
【2】弹出逗描述统计地对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选逗将标准化得分另存为变量地,最后点击确定。
【3】返回SPSS的逗数据视图地,在原始变量的最后多了一列Z开头的新变量,这个变量就是标准化后的变量了。基于此字段可以做其他分析。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询