f(x)=(1+2x)/√(1+x^2)
f'(x)={2√(1+x^2)-(1+2x)·1/[2√(1+x^2)]·2x}/[√(1+x^2)]^2
=[2√(1+x^2)-(x+2x^2)/√(1+x^2)]/(1+x^2)
=[2(1+x^2)-x-2x^2]/(1+x^2)^(3/2)
=(2-x)/(1+x^2)^(3/2)
f'(x)=0
(2-x)/(1+x^2)^(3/2)=0
2-x=0
x=2
f(2)=(1+2×2)/√(1+2^2)
=5/√5
=√5
极值点:(2,√5)
f'(x)>0
(2-x)/(1+x^2)^(3/2)>0
2-x>0
x2
f(x)在x=2处有极大值:f(x)=√5