如何求抽象复合函数的一,二阶偏导数
2017-06-26 · 知道合伙人教育行家
关注
展开全部
多元复合函数的高阶偏导数是考研数学的重要考点,同时也是多元函数微分学部分的难点,考查题型可以是客观题也可以是主观题,该知识点还经常与微分方程一起出综合题。
解决多元复合函数高阶偏导关键在于画出关系图,同时弄明白函数偏导数依然为多元复合函数。
一、多元复合函数偏导数


上面公式可以简单记为“连线相乘,分线相加”;也可以借助微分形式不变性,即函数有几个中间变量,则偏导有几部分组成(不排除个别部分为零).
二、多元复合函数二阶偏导数
对于复合函数二阶偏导数,关键需要理解函数对中间变量的偏导数依然为多元复合函数,其关系与原来因变量与自变量关系完全一致,即:

先画出关系图:
解决多元复合函数高阶偏导关键在于画出关系图,同时弄明白函数偏导数依然为多元复合函数。
一、多元复合函数偏导数


上面公式可以简单记为“连线相乘,分线相加”;也可以借助微分形式不变性,即函数有几个中间变量,则偏导有几部分组成(不排除个别部分为零).
二、多元复合函数二阶偏导数
对于复合函数二阶偏导数,关键需要理解函数对中间变量的偏导数依然为多元复合函数,其关系与原来因变量与自变量关系完全一致,即:

先画出关系图:
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询