求伯努利方程y'+y/x=2x^(-1/2)y^(1/2)
2个回答
展开全部
let
u=(y/x)^(1/2)
du/dx = (1/2)(y/x)^(-1/2) . [ (1/x)dy/dx - (1/x^2)y ]
dy/dx =x [2u.du/dx + (1/x) u^2 ]
-----------------
y'+y/x=2x^(-1/2).y^(1/2)
x [2u.du/dx + (1/x) u^2 ] + u^2 = 2u
2xu.du/dx = 2u-2u^2
xdu/dx = 1-u
∫du/(1-u) = ∫dx/x
-ln|1-u| +C' = ln|x|
x/(1-u) = e^C'
x/[1- (y/x)^(1/2) ] =e^C'
1- (y/x)^(1/2) = Cx
(y/x)^(1/2) = 1-Cx
y/x = (1-Cx)^2
y= x(1-Cx)^2
u=(y/x)^(1/2)
du/dx = (1/2)(y/x)^(-1/2) . [ (1/x)dy/dx - (1/x^2)y ]
dy/dx =x [2u.du/dx + (1/x) u^2 ]
-----------------
y'+y/x=2x^(-1/2).y^(1/2)
x [2u.du/dx + (1/x) u^2 ] + u^2 = 2u
2xu.du/dx = 2u-2u^2
xdu/dx = 1-u
∫du/(1-u) = ∫dx/x
-ln|1-u| +C' = ln|x|
x/(1-u) = e^C'
x/[1- (y/x)^(1/2) ] =e^C'
1- (y/x)^(1/2) = Cx
(y/x)^(1/2) = 1-Cx
y/x = (1-Cx)^2
y= x(1-Cx)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询